Conversations about science, technology, history, philosophy and the nature of intelligence, consciousness, love, and power. Lex is an AI researcher at MIT and beyond.
Similar Podcasts

Radiolab
Radiolab is on a curiosity bender. We ask deep questions and use investigative journalism to get the answers. A given episode might whirl you through science, legal history, and into the home of someone halfway across the world. The show is known for innovative sound design, smashing information into music. It is hosted by Jad Abumrad, Lulu Miller, and Latif Nasser.

Diego Ruzzarin
Filosofía, noticias, política global, pensamiento crítico y negocios, con Diego Ruzzarin, brasileño, políglota y crítico ideológico con maestría en Diseño de Experiencias y consultor en todos los continentes.IG: @diegoruzzarinFB: @diegoruzzarinWeb: https://diegoruzzarin.com/ See acast.com/privacy for privacy and opt-out information.

Detective Google
Únete al club: https://splendid.clubEs el año 20XX. Desde su despacho en el fin del mundo, el Detective Google investiga los crímenes que acechan a los habitantes de internet.A medio camino entre la reflexión tecnológica y el true crime, cada temporada de Detective Google explorará cómo el crimen se aprovecha de los avances tecnológicos y cómo los avances tecnológicos inventan nuevas formas de cometer crímenes, y qué dice esta retroalimentación sobre nuestro mundo, el que hay fuera del ordenador.Apúntate a Splendid y consigue acceso a comunidades exclusivas, episodios sin anuncios y contenido extra de todos nuestros podcasts: https://splendid.club Hosted on Acast. See acast.com/privacy for more information.
#76 – John Hopfield: Physics View of the Mind and Neurobiology
John Hopfield is professor at Princeton, whose life’s work weaved beautifully through biology, chemistry, neuroscience, and physics. Most crucially, he saw the messy world of biology through the piercing eyes of a physicist. He is perhaps best known for his work on associate neural networks, now known as Hopfield networks that were one of the early ideas that catalyzed the development of the modern field of deep learning. EPISODE LINKS: Now What? article: http://bit.ly/3843LeU John wikipedia: https://en.wikipedia.org/wiki/John_Hopfield Books mentioned: – Einstein’s Dreams: https://amzn.to/2PBa96X – Mind is Flat: https://amzn.to/2I3YB84 This conversation is part of the Artificial Intelligence podcast. If you would like
#75 – Marcus Hutter: Universal Artificial Intelligence, AIXI, and AGI
Marcus Hutter is a senior research scientist at DeepMind and professor at Australian National University. Throughout his career of research, including with Jürgen Schmidhuber and Shane Legg, he has proposed a lot of interesting ideas in and around the field of artificial general intelligence, including the development of the AIXI model which is a mathematical approach to AGI that incorporates ideas of Kolmogorov complexity, Solomonoff induction, and reinforcement learning. EPISODE LINKS: Hutter Prize: http://prize.hutter1.net Marcus web: http://www.hutter1.net Books mentioned: – Universal AI: https://amzn.to/2waIAuw – AI: A Modern Approach: https://amzn.to/3camxnY – Reinforcement Learning: https://amzn.to/2PoANj9 – Theory of Knowledge: https://amzn.to/3a6Vp7x This conversation
#74 – Michael I. Jordan: Machine Learning, Recommender Systems, and the Future of AI
Michael I. Jordan is a professor at Berkeley, and one of the most influential people in the history of machine learning, statistics, and artificial intelligence. He has been cited over 170,000 times and has mentored many of the world-class researchers defining the field of AI today, including Andrew Ng, Zoubin Ghahramani, Ben Taskar, and Yoshua Bengio. EPISODE LINKS: (Blog post) Artificial Intelligence—The Revolution Hasn’t Happened Yet This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where
#73 – Andrew Ng: Deep Learning, Education, and Real-World AI
Andrew Ng is one of the most impactful educators, researchers, innovators, and leaders in artificial intelligence and technology space in general. He co-founded Coursera and Google Brain, launched deeplearning.ai, Landing.ai, and the AI fund, and was the Chief Scientist at Baidu. As a Stanford professor, and with Coursera and deeplearning.ai, he has helped educate and inspire millions of students including me. EPISODE LINKS: Andrew Twitter: https://twitter.com/AndrewYNg Andrew Facebook: https://www.facebook.com/andrew.ng.96 Andrew LinkedIn: https://www.linkedin.com/in/andrewyng/ deeplearning.ai: https://www.deeplearning.ai landing.ai: https://landing.ai AI Fund: https://aifund.ai/ AI for Everyone: https://www.coursera.org/learn/ai-for-everyone The Batch newsletter: https://www.deeplearning.ai/thebatch/ This conversation is part of the Artificial Intelligence podcast. If you would like to
#72 – Scott Aaronson: Quantum Computing
Scott Aaronson is a professor at UT Austin, director of its Quantum Information Center, and previously a professor at MIT. His research interests center around the capabilities and limits of quantum computers and computational complexity theory more generally. This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where you can watch the video versions of these conversations. If you enjoy the podcast, please rate it 5 stars on Apple Podcasts, follow on Spotify, or support it
Vladimir Vapnik: Predicates, Invariants, and the Essence of Intelligence
Vladimir Vapnik is the co-inventor of support vector machines, support vector clustering, VC theory, and many foundational ideas in statistical learning. He was born in the Soviet Union, worked at the Institute of Control Sciences in Moscow, then in the US, worked at AT&T, NEC Labs, Facebook AI Research, and now is a professor at Columbia University. His work has been cited over 200,000 times. This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where you
Jim Keller: Moore’s Law, Microprocessors, Abstractions, and First Principles
Jim Keller is a legendary microprocessor engineer, having worked at AMD, Apple, Tesla, and now Intel. He’s known for his work on the AMD K7, K8, K12 and Zen microarchitectures, Apple A4, A5 processors, and co-author of the specifications for the x86-64 instruction set and HyperTransport interconnect. This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where you can watch the video versions of these conversations. If you enjoy the podcast, please rate it 5 stars
David Chalmers: The Hard Problem of Consciousness
David Chalmers is a philosopher and cognitive scientist specializing in philosophy of mind, philosophy of language, and consciousness. He is perhaps best known for formulating the hard problem of consciousness which could be stated as “why does the feeling which accompanies awareness of sensory information exist at all?” This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where you can watch the video versions of these conversations. If you enjoy the podcast, please rate it 5
Cristos Goodrow: YouTube Algorithm
Cristos Goodrow is VP of Engineering at Google and head of Search and Discovery at YouTube (aka YouTube Algorithm). This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where you can watch the video versions of these conversations. If you enjoy the podcast, please rate it 5 stars on Apple Podcasts, follow on Spotify, or support it on Patreon. This episode is presented by Cash App. Download it (App Store, Google Play), use code “LexPodcast”. Here’s
Paul Krugman: Economics of Innovation, Automation, Safety Nets & Universal Basic Income
Paul Krugman is a Nobel Prize winner in economics, professor at CUNY, and columnist at the New York Times. His academic work centers around international economics, economic geography, liquidity traps, and currency crises. This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where you can watch the video versions of these conversations. If you enjoy the podcast, please rate it 5 stars on Apple Podcasts, follow on Spotify, or support it on Patreon. This episode is
Ayanna Howard: Human-Robot Interaction and Ethics of Safety-Critical Systems
Ayanna Howard is a roboticist and professor at Georgia Tech, director of Human-Automation Systems lab, with research interests in human-robot interaction, assistive robots in the home, therapy gaming apps, and remote robotic exploration of extreme environments. This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where you can watch the video versions of these conversations. If you enjoy the podcast, please rate it 5 stars on Apple Podcasts, follow on Spotify, or support it on Patreon.
Daniel Kahneman: Thinking Fast and Slow, Deep Learning, and AI
Daniel Kahneman is winner of the Nobel Prize in economics for his integration of economic science with the psychology of human behavior, judgment and decision-making. He is the author of the popular book “Thinking, Fast and Slow” that summarizes in an accessible way his research of several decades, often in collaboration with Amos Tversky, on cognitive biases, prospect theory, and happiness. The central thesis of this work is a dichotomy between two modes of thought: “System 1” is fast, instinctive and emotional; “System 2” is slower, more deliberative, and more logical. The book delineates cognitive biases associated with each type
Grant Sanderson: 3Blue1Brown and the Beauty of Mathematics
Grant Sanderson is a math educator and creator of 3Blue1Brown, a popular YouTube channel that uses programmatically-animated visualizations to explain concepts in linear algebra, calculus, and other fields of mathematics. This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where you can watch the video versions of these conversations. If you enjoy the podcast, please rate it 5 stars on Apple Podcasts, follow on Spotify, or support it on Patreon. This episode is presented by Cash
Stephen Kotkin: Stalin, Putin, and the Nature of Power
Stephen Kotkin is a professor of history at Princeton university and one of the great historians of our time, specializing in Russian and Soviet history. He has written many books on Stalin and the Soviet Union including the first 2 of a 3 volume work on Stalin, and he is currently working on volume 3. This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai or connect with @lexfridman on Twitter, LinkedIn, Facebook, Medium, or YouTube where you can watch the video versions of these conversations. If you
Donald Knuth: Algorithms, TeX, Life, and The Art of Computer Programming
Donald Knuth is one of the greatest and most impactful computer scientists and mathematicians ever. He is the recipient in 1974 of the Turing Award, considered the Nobel Prize of computing. He is the author of the multi-volume work, the magnum opus, The Art of Computer Programming. He made several key contributions to the rigorous analysis of the computational complexity of algorithms. He popularized asymptotic notation, that we all affectionately know as the big-O notation. He also created the TeX typesetting which most computer scientists, physicists, mathematicians, and scientists and engineers use to write technical papers and make them look